Produksi Coconut Vinegar dari Limbah Air Kelapa dengan Model Fermentasi Cair Termodifikasi Sel Yeast Terimobilisasi Kalsium Alginat

Authors

  • Dini Nur Afifah Universitas Muhammadiyah Purwokerto
  • Abdul Haris Mulyadi Universitas Muhammadiyah Purwokerto
  • Hana Syifa Fadhila Universitas Muhammadiyah Purwokerto
  • Yeti R. Hasanah Universitas Muhammadiyah Purwokerto
  • Puput Wahyu Nita Savitri Universitas Muhammadiyah Purwokerto

DOI:

https://doi.org/10.30595/pspfs.v6i.853

Keywords:

Coconut vinegar, Fermentasi, Media Cair SImultan, Yeast Terimobisasi Alginat

Abstract

Coconut (Cocos Nucifera L) is one of the Indonesia’s plantations comodities. Unfortunately, the abundance of raw materials has not had a significant impact on the export market for coconut products, especially functional food products. Based on that issue, research with the aim to produce diversified product of coconut was conducted. The product developed in this research was coconut vinegar produced by fermentation process of coconut waste water via liquid fermentation pathway. To increase efficiency and reduce production costs, the fermentation process was carried out simultaneously. In order to increase the yeast resistance to acetic acid produced by acetic acid bacteria (BAA), the process modification was conducted by using yeast immobilized formed by the calcium alginate matrix. The research results show that the optimum BAA inoculation time was 24 hours after the bead yeast inoculation. The maximum bead yeast mass obtained in this study was 25% m/v. Fermentation that was carried out with the maximum time and bead mass was able to produce coconut vinegar with an acetic acid content of 5.1 g/L, an alcohol conversion of 22.73%.

This work is licensed under a Creative Commons Attribution 4.0 International License

References

Adler, P., Frey, L. J., Berger, A., Bolten, C. J., Hansen, C. E., & Wittmann, C. (2014). The key to acetate: Metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Applied and Environmental Microbiology, 80(15), 4702–4716. https://doi.org/10.1128/AEM.01048-14

Awaltanova,Ella., Syaiful, BAhri., Chairul., 2015, “Fermentasi Nira Nipah Menjadi Bioetanol Menggunakan Teknik Immobilisasi Sel Saccharomyces Cerevisiae”, JOM FTEKNIK Volume 2 No. 2.

Jiménez-Hornero, J. E., Santos-Dueñas, I. M., & García-García, I. (2009). Optimization of biotechnological processes. The acetic acid fermentation. Part I: The proposed model. Biochemical Engineering Journal, 45(1), 1–6. https://doi.org/10.1016/j.bej.2009.01.009

Kanchanarach, W., Theeragool, G., Inoue, T., Yakushi, T., Adachi, O., & Matsushita, K. (2010). Acetic acid fermentation of acetobacter pasteurianus: Relationship between acetic acid resistance and pellicle polysaccharide formation. Bioscience, Biotechnology and Biochemistry, 74(8), 1591–1597. https://doi.org/10.1271/bbb.100183

Krusong, W., Yaiyen, S., & Pornpukdeewatana, S. (2015). Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. Journal of Applied Microbiology, 118(3), 629–640. https://doi.org/10.1111/jam.12715

Krusong, W., & Vichitraka, A. (2010). An investigation of simultaneous pineapple vinegar fermentation interaction between acetic acid bacteria and yeast Warawut. Asian Journal of Food and Agro-Industry, 3(01), 192–203.

Poreda, A., Tuszy?ski, T., Zdaniewicz, M., Sroka, P., & Jakubowski, M. (2013). Support materials for yeast immobilization affect the concentration of metal ions in the fermentation medium. Journal of the Institute of Brewing, 119(3), 164–171. https://doi.org/10.1002/jib.77

Roni, K. A., Kartika, D., Apriyadi, H., & Herawati, N. (2019). The effect of type and concentration yeast with fermentation time and liquifaction variations on the bioethanol concentration resulted by sorgum seeds with hydrolysis and fermentation processes. Journal of Computational and Theoretical Nanoscience, 16(12), 5228–5232. https://doi.org/10.1166/jctn.2019.8591

Saeki, A., Taniguchi, M., Matsushita, K., Toyama, H., Theeragool, G., Lotong, N., & Adachi, O. (1997). Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Bioscience, Biotechnology and Biochemistry, 61(2), 317–323. https://doi.org/10.1271/bbb.61.317

Siregar, J. S., Ahmad, A., & Amraini, S. Z. (2019). Effect of Time Fermentation and Saccharomyces Cerevisiae Concentration for Bioethanol Production from Empty Fruit Bunch. Journal of Physics: Conference Series, 1351(1). https://doi.org/10.1088/1742-6596/1351/1/012104

Sousa-Dias, M. L., Paula, V. B., Dias, L. G., & Estevinho, L. M. (2021). Mead production using immobilized cells of saccharomyces cerevisiae: Reuse of sodium alginate beads. Processes, 9(4). https://doi.org/10.3390/pr9040724

Sroka, P., Satora, P., Tarko, T., & Duda-Chodak, A. (2017). The influence of yeast immobilization on selected parameters of young meads. Journal of the Institute of Brewing, 123(2), 289–295. https://doi.org/10.1002/jib.409

Tanamool, V., Chantarangsee, M., & Soemphol, W. (2020). Simultaneous vinegar fermentation from a pineapple by-product using the co-inoculation of yeast and thermotolerant acetic acid bacteria and their physiochemical properties. 3 Biotech, 10(3), 1–11. https://doi.org/10.1007/s13205-020-2119-4

Xia, K., Zang, N., Zhang, J., Zhang, H., Li, Y., Liu, Y., Feng, W., & Liang, X. (2016). New Insights Into The Mechanisms Of Acetic Acid Resistance In Acetobacter Pasteurianus Using Itraq-Dependent Quantitative Proteomic Analysis. International Journal of Food Microbiology, 238, 241–251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.016

Zhao, J., Wang, Z., Wang, M., He, Q., & Zhang, H. (2008). The inhibition of Saccharomyces cerevisiae cells by acetic acid quantified by electrochemistry and fluorescence. Bioelectrochemistry, 72(2), 117–121. https://doi.org/10.1016/j.bioelechem.2007.11.015

Zulaikhah, S. T. (2019). Health Benefits Of Tender Coconut Water (Tcw) Siti Thomas Zulaikhah Department of Public Health, Faculty of Medicine, UNISSULA, Semarang, Central Java, Indonesia. International Journal of Pharmaceutical Sciences and Research, 10(2), 474–480.

Downloads

Published

2023-10-13

How to Cite

Afifah, D. N., Mulyadi, A. H., Fadhila, H. S., Hasanah, Y. R., & Savitri, P. W. N. (2023). Produksi Coconut Vinegar dari Limbah Air Kelapa dengan Model Fermentasi Cair Termodifikasi Sel Yeast Terimobilisasi Kalsium Alginat. Proceedings Series on Physical & Formal Sciences, 6, 54–61. https://doi.org/10.30595/pspfs.v6i.853